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For a reactive solute, with weak second-order recombination, an investigation is 
made of the near-source behaviour (where concentrations are high), and of the far 
field (where the recombination has an accumulative effect). Despite the loss of 
material and increased spread due to recombination, the far-field concentration 
distribution is shown to be nearly Gaussian. This permits a simplified (Gaussian) 
treatment of the chemical nonlinearity. Explicit solutions are given for the total 
amount of solute, variance and kurtosis for solutes with no first-order reactions. 

1. Introduction 
Longitudinal dispersion from a sudden discharge in a parallel shear flow provides 

an accurate indirect way of measuring small molecular diffusivities (Taylor 1954). 
This is because the (large) eventual longitudinal spreading rate varies inversely as the 
(small) molecular diffusivity (Taylor 1953). The values of the diffusivities are of 
particular importance in chemical reaction processes (such as flames). 

For reactive chemical species the longitudinal dispersion process is itself modified 
by chemical reactions. This is now well-understood when there is a first-order reaction 
within the flow or at the boundary (Sankarasubramanian & Gill 1973; De Gance & 
Johns 1978; Lungu & Moffatt 1982; Smith 1983; Barton 1984). The downstream 
transport velocity and spreading rate can be changed, but the predominant feature 
is an exponential decrease in concentration. 

To compensate for the loss of material the discharge can be prolonged and 
intensified. However, the possibility then arises of second-order chemical reactions. 
Motivated by experimental observations, Barton (1986) showed that in various 
asymptotic regimes, weak second-order recombination can substantially change the 
concentration distribution (see his figures 1, 2). Not only is there a loss of material, 
but also there can be an increased rate of spreading. The purpose of the present paper 
is to give a unified treatment which spans the regimes investigated by Barton 
(1986). 

The premise upon which the present work is based is that, in an appropriate frame 
of reference, the concentration distribution is nearly Gaussian. So, the mathematical 
task is reduced to evaluating the extent to which the chemical nonlinearity modifies 
the area, centroid and variance of the Gaussian. At small times it is important to 
account for the duration of the discharge (i.e. finite initial concentrations and 
reaction rates) and it is appropriate to represent the concentrations as being nearly 
Gaussian with respect to time. At larger times the ubiquitous skewness (Chatwin 
1967) can be avoided by the device advocated by Smith (1987) of using tilted axes 
(an optimal combination of x and t ) .  A measure of the accuracy of the Gaussian 
approximation is obtained from a calculation of the kurtosis (spikiness). 
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2. Full equations 
To maximize the connection with the cited analyses of first-order reactions we 

include the possibilities of conversion within the flow and at  the boundary. The full 
equations which we seek to solve are 

a, c + u a, c - v - (KVC) = - a c  - yc2 + 4, (2.1 a )  

with Kn*Vc+/3c=O on 3A. (2.1 b) 

Here c(x ,  y, z, t )  is the concentration, ~ ( y ,  z )  is the flow velocity in the longitudinal 
x-direction, V is the transverse gradient operator (0, ay, a&, K ( Y ,  z )  is the transverse 
diffusivity, a ( y ,  z )  is the loss rate for a first-order reaction within the flow, y(y,  z )  is 
the rate coefficient for the second-order recombination, q(x, y,  z,  t )  is the source 
strength, n is the outwards normal to the boundary aA, and /3(y,z) is the rate 
coefficient for the first-order boundary reaction. We have ignored longitudinal 
diffusion die, on the assumption that it is dominated by shear dispersion (Taylor 
1953). 

The first-order reactions imply that at large times or distances there will be 
exponential decay (with respect to x or t ,  or some combination of x and t ) .  In 
particular if we pose the (x, +structure 

exp(-A[t+(x-Ut)S]), (2.2) 

then the associated (y, 2)-dependence satisfies the equations 

v. (KV$4) + h [ l +  ( U -  u) d] $4- a$4 = 0, ( 2 . 3 ~ )  

with Kn.Vq5+/34=0 on aA (2.3b) 
- 

and $2 = 1, $4 2 0. (2.3c, a) 
The particular choices S = 0 or 6 = U-’ make the exponential (2.2) depend on t or x 
respectively. The natural selection for the advection velocity U is the weighted 
average 

U=*. (2.4) 

We can factor out the exponential decay, and the reference concentration psofile 
$(y, z ) ,  by means of the change of variables 

c = C&y, 2) exp (-W, ( 2 . 5 ~ )  

where 7 = t+(x-Ut)S,  5’ = x-ut .  (2.5b, c) 

The new dependent variable C(z’, y, z,  7) satisfies the equations 

$42[1 + ( u - U ) S ] ~ , C + ~ ~ ~ ( U - U ) ~ , , C - ~ . ( $ ~ ~ K ~ ~ C )  = -y$43C2exp (-A~)+$pexp (AT) ,  
( 2 . 6 ~ )  

with (b2Kn.VC=0 on aA. (2.6b) 

In the special case S = U-l the ?-coordinate corresponds to downstream distance 
x /U .  Nothing about the actual concentration distribution can depend on the value of 
S. However, the selection of S does influence the accuracy of the subsequent Gaussian 
approximation. 

The advantage of (2.6a, 6 )  over the original equations (2.la, b)  is that a t  large times 
after discharge C becomes uniform across the flow and varies slowly with respect to 



Second-order recombination i n  a parallel shear Jlow 39 1 

both x' and 7. Barton (1986) considers the important limiting case in which there is 
no first-order reaction and the second-order recombination is weak : 

h = 0, 4 = 1 with y small. (2.7) 

3. Hermite series representation 
Although we shall eventually be making a Gaussian approximation, we shall 

embed our calculations in a rigorous framework. To describe the initial behaviour, we 
regard the discharge as taking place a t  7 = 0, with centroid a t  x' = 0 and variance 
p2. The ( x', y, 2)-dependence of the discharge is represented by a Hermite series : 

with 

00 

(-'") { qo(y, z )  + C Hem(()}, 
p(2x)i m=3 p m  

q =  

5' E = - .  
P 

(3 . la)  

(3.lb) 

The Hermite polynomials Hem(E) can be defined recursively : 

He, = 1,  He, = f ; ,  He, = flHem-, - (m-  1)  Hempp. ( 3 4  

The nature of the discharge may make it appropriate to use a particular value of 6 
in describing the source and the initial stages. In  the special case 6 = U-l,  (3 . la)  
is a Hermite series with respect to time for a discharge with temporal variance 
p2/luz, and positioned a t  x = 0. 

In  the spirit of the work of Chatwin (1970, 1980) and of Smith (1982), we represent 
the concentration distribution C for 7 > 0:  

with 

(3.3a) 

(3.36) 

Here a2(y, z ,  7) is the additional variance, and X the centroid location for 7 > 0. The 
major departures from the work of Barton (1986, 992, 3) are that there is no 
restriction to large 7 or to  S = 0. In  the Gaussian approximation we retain just the 
a, term. The higher-order terms a3 and a4 are associated respectively with the 
skewness and the kurtosis (spikiness). The selection of S can be used to minimize the 
skewness at moderate and large times (Smith 1987). 

Erdelyi et al. (1954, equation 16.5.14) give a formula which permits us to  represent 
the quadratic term C2: 

(3.4) 

The coupling coefficients I ( k ,  1, m) are zero for k + l + m  odd, and have the symmetric 
form 

T( s - k )  T(s  - 1 )  T ( s  - m) 
I =  for k + 1 + m even. ( 3 . 5 ~ )  

ns 

29 = k + l + m + l .  (3.5b) with 
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In particular, we note that 
I ( O , O ,  2n) ( -  1)" 

(2n)! n!22n. 
=- 

The coefficient of He,([) in ( 2 . 6 ~ )  yields an equation for am(y,  z ,  7) : 

(3 .7a)  

with $2Kn.Va, = 0, $2Kn.VX = 0, $2Kn-Vu2 = 0 on i3A. (3.7b-d)  

The starting conditions are 

a, = b,, X=O, u2 = 0 at 7 =  0, (3.8a-c) 

with $[l+ (u- U )  61 b, = q,. (3.9) 

The absence of a, and a2 in the series ( 3 . 3 ~ )  implies that, form = 1 , 2 ,  ( 3 . 7 ~ 4 )  define 
the centroid location X and the additional variance u2. 

4. Simplified nonlinearity 
The most obvious source of complication in ( 3 . 7 ~ )  is double summation with 

respect to k and 1. To alleviate this, we make the (quasi-Gaussian) approximation of 
retaining just the k = 1 = 0 contribution. The resulting equations for a,,T,u2 and 
a, are 

yq53 exp ( - h7) a: 
p[ i+  (u- U )  SI aTao - v .  ( ~ K v u , )  = - (4.1 a )  

( r 2  + p")" 2Rf ' 

Va, - vx 
$2[ 1 + (u - U )  S] a,x- 24% - V S ( $ ~ K V X )  = $'(u-U), ( 4 . l b )  

a, 

Va, ' vu2 
$2[ 1 + (U - u) a] 3, V2 - 2$2K - v * ($2KvCT2) 

a0 
a o ( d  +p2)4 

4x4 
= 2 $ 2 ~ ( V X ) 2  + y$3 exp ( -h7) , ( 4 . 1 4  

E(aZ+p2)"-f ( -  1) " a, 
- n! 22"-2 '). (4.ld) 

4xt 

The term prefixed E arises only for m( = 2n) even. 
Various qualitative features can be inferred directly from (4.1 a d ) .  From (4.1 a )  we 

see that the loss of material due to  recombination is greatest where a, is large and 
u2+p2 is small. At  moderate distances downstream of the discharge u2 can vary 
markedly across the flow, being large at the boundary and small where the flow is 
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fastest. This suggests that there will tend to be an initial depletion of a, in the fastest 
part of the flow. 

In (4.lb) the Va,.VX term enables us to infer that this initial depletion of a, in the 
fastest part of the flow gives a negative contribution to X. All this means physically 
is that when there is proportionately less material remaining in the fastest part of the 
flow, the centroid initially moves downstream more slowly. 

For the additional variance r2, we note that the recombination term on the right- 
hand side of ( 4 . 1 ~ )  is positive. As revealed by Barton (1986, figures 1, 2), this 
apparent spreading is consequence of the flattening of the concentration distribution 
(i.e. greatest depletion near the centroid where the concentration is largest). 

Another aspect of this flattening is that for m = 4 (n = 2) the recombination term 
in (4.ld) gives a negative contribution to a4. It is the magnitude of the kurtosis 

4! a4 
a,(r2+p2)' 

A ,  = 

which will give a measure of the accuracy of the quasi-Gaussian approximation. 
Following Barton (1986), the remainder of this paper concerns weak recom- 

bination, with yao/a regarded as being small. This limiting case is sufficiently rich 
to enable us to quantify the features noted above. 

5. Recombination near the source for a short pulse 
For a comparatively sudden discharge, with p small, the high initial concentrations 

can lead to significant recombination very close to the discharge point. The principal 
simplification is that for small 7 the centroid displacement X ( 7 ,  y,z) can be 
approximated by 

7(u - U )  
[ 1 + (u - u) S] . 

X =  

The corresponding small-7 versions of the equations for the amplitude a, and the 
additional variance r2 can be written 

(5.2b) 

If the (Vu), shear term in (5.2b) was absent, then the growth of ( ~ / p ) ~  would be 
too slow to keep the chemical reactions from going to completion (i.e. total loss of 
contaminant). The timescale upon which the shear term becomes important in 
equation (5.2 b) can be estimated : 

Thus, we are led to define a dimensionless time coordinate 

( 5 . 3 ~ )  

(5.3b) 
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The corresponding dimensionless measure of the source duration p is 

PK(VU)2  

[ I +  (U - u) 81’ ( ~ g S b , ) ~  ’ 

S =  (5.4) 

We note that the local value of S depends strongly upon the local shear ( ix .  when the 
shear is strong there is comparatively little time available for initial recombination, 
so the effective source duration is large). 

The coupled equations (5.2a, b )  now become 

The initial conditions are 
(rz 

- 1, - p2 = 0. 3- 
60 

( 5 . 5 a )  

( 5 . 5 6 )  

(5.6a, b )  

Alternatively, we can eliminate cr2/p2 to  derive a nonlinear second-order differential 
equation for the concentration ratio f = a,/b,: 

with 

---(-J+-&-j) d2f 9 df 47c&B2 df = 0, 
do2 4f d8 

- 1  
a t  8 = 0. f = 1 ,  z--- df - 

#a 2 4  

( 5 . 7 ~ )  

(5.7 b ,  c )  

The asymptotic value a t  large 8 (see figure 1) provides the relationship 

qeff =fq (5 .8)  

between the effective and the actual discharge profiles. 
It is noteworthy that f varies remarkably little over large changes in S. So, if we 

were to perform averaging across the flow, the graph offagainst gwould be virtually 
indistinguishable from figure 1. 

As an illustrative example, we consider a uniform discharge in Poiseuille pipe 
flow 

(5 .9 )  

with no first-order decay, and with the second-order rate coefficient uniform across 
the flow ( y  = constant). We take S = l/g, so the discharge is envisaged as taking 
place at  the fixed location x = 0 with a temporal spread p/a.  The expression (5 .3)  for 
S then becomes 

where 

( 5 . 1 0 ~ )  

(5.10b) 

Figure 2 shows the effective discharge distribution, outwards from the centreline of 
the pipe, for several values of the averaged source duration parameter S. As well as 
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10-4 lo-* 1 O0 1 O2 104 

Local source duration parameter, S 

FIGURE 1. The reduction factor f i n  the effective discharge strength, caused by recombination near 
the source, as a function of the local source duration parameter S. 

0 1 

1 

0 1 
Effective discharge strength 

FIGURE 2. The effective discharge profile as modified by recombination near the source, for Poiseuille 
pipe flow for several values of the cross-sectionally averaged source duration parameter 8. 

the anticipated loss of material in the fastest part of the flow, there is also a marked 
loss near the boundary. This stems from the initially very high concentrations caused 
by making part of the release in the region of very slow flow. 

In terms of the discharge strength qo, the timescale (5 .3a)  is of order 

(5.11) 

For compatibility with the approximation (5.1) for X, this time must be short 
compared with the mixing time 

H 2 / X 2 K ,  (5.12) 
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were H is the distance between the maximum and minimum velocities (see the 
Appendix). Thus the quotient 

(5.13) 

must be small (i.e. the pulse length p must be short, or the discharge weak). 
Barton (1986) uses a small parameter 

8 =-. YQO (5.14) 

So, the above local analysis does indeed pertain to  weak recombination provided that 
the pulse length is not unduly long. I n  the opposite circumstance in which S is large 
over most of the flow (e.g. S > lo4), the initial recombination is negligible and we can 
t a k e f =  1.  

a 

6. Linear solution 
Over the mixing time (5.12), we can estimate that  the additional variance c2 is of 

order 

(equation (A 3)). in ( 4 . 1 ~ )  we can ignore recombination (relative to the a, term) 
during the mixing process provided that the quantity 

is small. I n  this circumstance the mixing process is linear and we can infer that  at 
moderately large 7 the amplitude a, becomes uniform, 

a0 -a = a m  (6.3) 

Here am is a measure of the total amount of contaminant remaining in the flow. 
Likewise, from the linear results derived by Smith (1987, (5 .8b)) ,  we find that the 

contaminant distribution eventually moves downstream at the weighted average 
velocity U,  with a centroid displacement function g(y, z )  between streamlines : 

x - g ( y , z ) + - - = - - 2 m ,  
G!f# 

( 6 . 4 ~ )  

where V((b2Kvg) = #'((V-U), (6 .4b)  

with 

and 

#2Kn.Vg=0 on aA 
- 
#2g = 0. 

( 6 . 4 ~ )  

(6.4d) 

The quantity D is the shear dispersion coefficient (Taylor 1953) 

D = (U - u) #2g = #2K(Vg)2. (6.5) 

For Poiseuille pipe flow with no first-order decay (# = l),  the centroid 
displacement function g(r) is given by 
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- 0.05 
Averaged source duration parameter, S 

FIQURE 3. The eventual displacement of the centroid position caused by the initial recombination, 
for Poiseuille pipe flow with a uniform discharge at x = 0. 

Thus, g is positive in the fastest part of the flow, corresponding to  a forwards 
displacement. Figure 3 shows the dimensionless mean centroid displacement 

with q taken to be uniform across the flow. Because the initial depletion takes place 
both a t  the centre and at the sides (see figure 2), the centroid displacement is 
remarkably insensitive to  S. The disparity between the (temporal) 6 = 0 and (spatial) 
6 = l/a centroids, stems from the fact that  the contaminant is continuing to be 
spread out a t  the rate 20 as it passes a given point (Smith 1987). 

From (6.4), or from the Appendix, we can estimate that 

H2Au 
9 - x .  

Thus, in ( 4 . 1 ~ )  for the additional variance 8, the linear and nonlinear forcing terms 
can be estimated as 

YQO H2AU 
4n2 2 / 6 ~ .  

and 
H 2 ( A ~ ) 2  

X4K 

Thus, to neglect recombination during the mixing regime, we require that 

- 0  €- 
YQ n2 

Au42/6 ( G 6 )  

(6.8a, b)  

be small. Conveniently, this is only marginally more stringent than the estimate (6.2) 
needed for the linearization of the a, equation. 

Again, we can simply quote the asymptotic results derived by Smith (1987, 
(6.14)) : 

- 2 = + g(y, Z) D6 - 6 ( ~  - U )  $'g2 S + 8D2S2, (6.10 U )  (Z 1 
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where (6.10b) 

with q52Kn.VR = 0 on i3A, ( 6 . 1 0 ~ )  

and q52R = 0. (6.10d) 

The eventual linear growth with 7 corresponds to Taylor's (1953) constant- 
dispersion-coefficient model. 

To match with the subsequent well-mixed regime, it is convenient to write the 
asymptote (6.10a) as 

8 = g2 + h, (6.11a) 

where y(b3h = 0, (6.11b) 

and g2+p2 = 2(7 -A7)0 .  (6.11 c )  

The displacement A7 between the virtual and actual source is given by 

- 

- 

If the initial discharge is short we can neglect -p2, or if it is long we take f = 1. 

rate coefficient uniform across the flow (y  = constant) we have 
For Poiseuille pipe flow with no first-order decay (# = 1) and with the second-order 

- c2a4 c3a4 
g 2 = m '  2 8 8 0 ~ ~  ' 

(u-a)gZ = ~ I 
(6.13) 

R = '{ 4 0 3 2 0 ~ ~  74 - 240 (:y + 120 (iJ + 60 (;I - 45 (3') 1 
Figure 4 shows the dependence upon the source duration parameter S of the 
dimensionless displacement h71c/a2 for a uniform discharge of short duration (i.e. 
with -p2 neglected). As in figure 3, there is weak dependence upon S. Again the 
&dependence is a simple consequence of the different (fixed time, fixed position, or 
mixed) viewpoints of the same evolving concentration distribution. 

In this linear regime the departure from a Gaussian distribution is dominated by 
the a3 skewness term, which has the asymptotic form 

5 - 7((U--U)(b29~-2026) .  (6.14) 
a0 

From the representation ( 3 . 3 ~ )  the (a2+p2)g term in the denominator implies that 
the skewness decays as 7-i. Thus, far enough downstream the concentration 
distribution does become Gaussian. However, as emphasized by Chatwin (1970), the 
approach is a t  a slow rate. 

We are free to choose 6 to give alternative representations of the same 
concentration distribution. The detailed behaviour of the initial discharge merely 
affect a,, and the qf contributions to the centroid position X and to the source 
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8 = Optimal 
- 

.......................................... ......... 
........ .................... 6 = 0  

- 
- 

6 =  1/a  
- - - - - _ _  - - - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i  

0.12 I 1 i 1 1 

displacement Ar. Smith (1987) advocates that to give accelerated validity to a 
Gaussian approximation, we should choose 

(6.15a) 

For Poiseuille pipe flow with no first-order reactions this optimal selection is 

s = 2/5@. (6.15b) 

7. Nonlinear well-mixed regime 
For h = 0, Barton (1986) showed that the nonlinear terms eventually have a 

substantial effect on the concentration distribution. In this well-mixed regime the 
(y, 2)-dependence of a, is lost. Thus, the equation (4.1 b) for the centroid displacement 
X completely decouples from the other equations. So, the linear asymptote (6.4a) 
remains valid arbitrarily far downstream. 

In view of the linear asymptote (6 .11~)  for the total variance c 2 + p 2 ,  we introduce 
a displaced coordinate 

r* = r-Ar.  

The parameter 6 is implicitly accounted for in the definition (6.12) of Ar. The cross- 
sectionally averaged versions of (4.1 a, c) are 

(7.1) 

(7.2a) 

(7.2b) 

Matching with the linear solution (6.3), (6 .11~)  is equivalent to the imposition of 
initial conditions at  the virtual source : 

( i O = a = a m ,  ( i 2 + p 2 = 0  a t  T * = O .  (7.3a, b)  

FIGURE 4. The delayed virtual time of discharge as a function of the averaged source duration 
parameter 8, for Poiseuille pipe flow with a uniform discharge. The positive values indicate the 
initial inefficiency of the shear-dispersion process. 
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A formal scaling with respect to 6 would suggest that hA7 be regarded as being of 
order 2. For clarity the exp(-hA~)  factors will henceforth be replaced by unity. 
Alternatively, we could absorb the exp (-AA7) factors in a redefinition of y.  

In the absence of first-order decay ( A  = 0) ,  these outer equations can be solved 
analytically. We introduce a new dimensionless independent variable 

where 

The transformed equation for the concentration ratio (8,/u,) is 

with 

For h = 0 the solution can be written 

(7.4u) 

(7.4b) 

(7.5) 

(7.5b) 

( 7 . 6 ~ )  

(7.6b) 

( 7 . 6 ~ )  

The three regimes investigated by Barton (1986, $53-5) are spanned by f small, 
moderate and large. The nonlinearity of ( 7 . 6 ~ )  means that the corresponding range 
of non-dimensional times is extremely large (e.g. with f = 5.7, ( 7 . 6 ~ )  yields a 
dimensionless time of 1000). 

The large-5 asymptotes yield the result 

(7.7) 

From his nonlinear similarity solution (Barton (1986, $5) obtained the numerical 
coefficient 2.904. Thus, the present simplified treatment of the nonlinearity is 
remarkably accurate. It is also noteworthy that the asymptotic solution for the total 
variance is 

Thus, the apparent shear dispersion coefficient is *$, and the spread is systematically 
greater than in the non-reactive case. 

For h non-zero, it is an elementary computational task to integrate (7.5u, b). 
Figures 5, 6 give plots of the dimensionless amplitude and excess variance 

&2+p2 - p*. (7.8) 

(7.9u, b )  
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L = l  

0.1 

0.001 

0 
I I I I I I 

0 200 400 600 800 lo00 
Dimensionless time lapse 

FIQURE 5. Relative loss of material at large times attributable to second-order recombination, for 
several values of the dimensionless first-order decay rate L. (The first-order exponential decay has 
been factored out.) 

Dimensionless time lapse 

FIQURE 6. Excess variance (beyond the linear diffusive spreading) at large times, for several values 
of the dimensionless first-order decay rate L.  

as functions of the dimensionless time lapse and first-order decay rate 

(7.10a, b)  

We recall that first-order decay has already been accounted for in the change of 
variable (2.5a). Thus, any reduction in 6,/a, can be attributed solely to second-order 
recombination. Likewise, by virtue of the displacement Ar, the definition (7.9 b) of 
the excess variance relates only to the nonlinearity (with unbounded growth when 

In keeping with the scalings employed by Barton (1986, §§3--5), the non- 
h = 0). 

dimensionalization ( 7 . 1 0 ~ )  implies a timescale 

D - H 2  ( A U ) ~  
( ~ 9 ~ ) ~  - 2 7 ~ 4  ( ~ 4 ~ ) ~  (7.11) 
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Correspondingly, the non-dimensionalization (7.10 b)  implies a first-order decay 
exponent 

h = 0(22/.11. x mixing time). 

Thus, as remarked above, hA7 is formally of order s2. 
For the skewness term k3 the far-field equation takes the form 

When there is no first-order decay ( A  = 0 ) ,  the solution is 

(7.12) 

(7.13) 

{( 1 + c);- 4( 1 + e)i+ 3) + constant. 
16.11.D 5 = [ (u-U)pg2-m2&] 

a, 3a2,(Y43)2 
(7.14) 

The constant term matches to the linear solution at  7* = 0. At  extremely large times, 
we can deduce that 

(7.15) 

There is an extra factor of 2 as compared with the linear result (6.14). We recall that 
the variance 8 + p 2  also grows more rapidly than in the non-reactive case. The net 
result is that the relative skewness is 3’/4 = 1.3 time is the linear skewness. In either 
case, the optimal choice (6 .15~)  for S eliminates the skewness. 

8. Kurtosis 
In view of Chatwin’s (1970) linear calculations and Barton’s (1986) nonlinear 

calculations, we can infer that it is only in the nonlinear outer regime that there can 
be persistent departures from Gaussianity. The strongest nonlinearity in (4.1 d )  is 
associated with the E-term, so is associated with m = (2n) even. If we write 

then the dominant terms in (4. 1 d )  yield the ordinary differential equations, 

The (Bn)! in the definition (8.1) permits us to identify A ,  as being the Kurtosis 
(spikiness). 

The change of independent variable (7.4a’b) from 7* to 6, and neglecting hAt*, 
gives the transformed equation 

For n = 0’1 we have 
A ,  = 1, A ,  = 0 

(8.3) 

(8.4a, b )  
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Dimensionless time lapse 

0 200 400 600 800 1000 
I I t I l  r r -  r - n i  

-0.5 1 0 

FIGURE 7. Kurtosis (spikiness) at large time, for several values of the dimensionless first-order 
decay rate L.  

and the initial conditions (matching to the linear inner solution) are 

O = A , = A , =  ... a t  t = O .  
I n  the absence of first-order reactions ( A  = 0)) the solution for A ,  is 

L 
A ,  = --[l n(1+t)-[+M2-%t3+i4] .  

t4 
This solution for the kurtosis is shown in figure 7 ,  together with the numerical 
solution when there is a first-order decay. The bounding value of A ,  = -+ corresponds 
to  a & reduction in the peak concentration. The relationship ( 7 . 6 ~ )  between 6 and the 
non-dimensional time imply that figure 7 only extends out to  5 = 5.7, so the 
asymptote is still quite far from being attained. The accuracy of the quasi-Gaussian 
approximation (cf. (7.7)) can be attributed to the smallness of the departure from a 
Gaussian profile. A physical explanation of why the flatness is so slight is that, for 
weak recombination, there is plenty of time for the concentration distribution to 
adjust back towards the non-reactive Gaussian form. 

9. Effect of recombination on the concentration distribution 
If there is no first-order decay ( A  = 0 ) ,  then the explicit solutions (7.6a, b ) ;  (8.2) for 

the amplitude, variance and kurtosis, make it elementary for us to  calculate the 
concentration distribution. For illustration we consider the fixed large time and short 
pulse length 

PK = 0.01 
tK 
-= 10, ~ 

a2 @a2 
(9.1 a, b)  

for a uniform discharge in Poiseuille pipe flow. We regard the chemical nature of the 
material to be fixed 

y = constant, 

and we characterize the nonlinearity (i.e. the size of the discharge) by the 
measure 

= YQo/@ (9.3) 
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6 = 0.5 

8 9 10 11 12 
Distance, X K / ~ ~ U *  

FIGURE 8. Comparison between the longitudinal concentration distribution when the amount of 
reactive contaminant discharged into the flow is increased by successive factors of 5. ' 

Figure 8 shows the predicted spatial concentration distribution, including skewness 
and kurtosis, for e = 0.02, 0.1, 0.5. These values of e span the three regimes 
investigated by Barton (1986, $$3-5.) 

The first step towards determining the profiles is to  quantify the loss of 
contaminant during the initial discharge process. As shown in $5, the crucial 
quantity is the average source duration parameter : 

= 6667, 53.3, 0.427. (9.4) 

From figure 1 we can estimate that after the initial recombination the fractional 
amount of material left in the flow is given by 

5 = 0.95, 0.82, 0.48. 
Po 

(9.5) 

Next, the evolution in the linear regime can be accounted for by means of a 
centroid displacement and a time displacement. Since we intend to present results at 
a fixed time, it is convenient to choose 6 = 0 .  From figures 3, 4 we obtain the 
values 

X K  
- = -0.0002, -0.0006, -0.0013, (9.6) 
@a2 

AT- = 0.101, 0.102, 0.104. 19.7) 
K 

a2 

To account for the finite duration p of the pulse (see (6.12)), we need to subtract 
0.0024 from the latter values (9.7). 

For the final nonlinear regime, the dimensionless time lapse ( 7 . 1 0 ~ )  can be 
estimated : 

4tk2ky(t:-A~$) = 0.17, 3.2, 27. 

From (7.6c), we can determine that the corresponding 6 values are 

6 = 0.12, 0.49, 1.27. 

(9.8) 

(9.9) 
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We can use either figure 4, or the formula ( 7 . 6 ~ )  to deduce that the amount of 
material remaining in the flow has been reduced by the additional factors 

5 = 0.86, 0.59, 0.34. 
a,  

(9.10) 

Hence, relative to the original amount qo, we find that the composite effect of short- 
term and long-term recombination gives the overall reduction 

5 = 0.82, 0.48, 0.16. (9.11) 
qo 

From (7.6b) we can calculate that the &values (9.9) correspond to the 
dimensionless variances 

~ 0 . 3 4 7 ,  7.0, 62.2. (9.12) 

These results could also be obtained via figure 6 for the dimensionless excess 
variances. The above results (9.5) for the quotient am/qo, permit us to get direct 
estimates for the variance : 

K2 
yjy (a2 +p2)  = 0.417, 0.452, 0.469. (9.13) 
u a  

Hence, there is a modest increase in variance with increasing chemical recombination. 
If we are to include skewness, then the formula (7.14) yields 

% ( e t y ( & r  = 1.1 x 10-0(1-2.5a3), 1 . 6 ~  10-6(1-2.5a6), 1 . 0 4 ~  10-4(1-2.5a6). 
a m  

(9.14) 
Equivalently, and more usefully, 

3 

h(L)  = O.OO35(1-2.56a), 0.0040(1-2.56~), 0.0053(1-2.56@). (9.15) 
do a2a 

The small numerical coefficients (as contrasted to those in (9.13)), are indicative of 
the small skewness at this comparatively large time after discharge. 

Finally, for the kurtosis, (8.6) or figure 7 yields 

A ,  = -0.043, -0.14, -0.25. (9.16) 

So, the chemical recombination gives a modest flattening of the concentration 
distribution. 

The profiles shown in figure 8 are close to Gaussian, and so justify the simplified 
(quasi-Gaussian) treatment of the chemical nonlinearity. Increasing the amount of 
material discharged into the flow by successive factors of 5 does not have a 
proportional effect upon the concentration. In terms of the longitudinal spreading, 
the second-order recombination does cause a modest increase in variance. Thus, as 
a means of measuring K ,  there is a loss of accuracy unless allowance is made for the 
chemical nonlinearity as calculated here or by Barton (1986). 
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10. Concluding remarks 
The main outcome of this paper is a three-stage division of the dispersion process. 

First there is recombination near the source. The more prolonged the discharge, or 
the larger the local velocity shear, the more the amount of material that remains 
unreacted in the flow (i.e. the larger the effective source strength) a t  the beginning 
of the second (linear) stage of the dispersion process. During the second stage the 
weak second-order chemical reactions can be ignored. So, established results on shear 
dispersion can be used to quantify the adjustments of the centroid and the amount 
of spread. In particular, a comparison with a constant-dispersion coefficient model 
(Taylor 1953) permits us to define an effective time of discharge in order to get the 
same amount of spread. Finally, there is a nonlinear well-mixed regime. The 
systematic loss of material by recombination where the concentration is high can 
eventually give a one-third increase in the apparent rate of spreading (and a slightly 
flattened profile with negative kurtosis). To calculate the concentration distribution 
at  large times, it is necessary to account for all three stages. Recombination near the 
source determines the effective source strength, linear adjustment determines the 
effective time origin, and the nonlinear well-mixed regime determines the subsequent 
evolution. 

I wish to thank the Royal Society for financial support. 

Appendix. Linear solutions for a simple special case 

ignored. Thus, to guide the estimates we consider the special case 
Powers of x can be important in assessing when the chemical nonlinearity can be 

u = a+Aucos(xy/H), - H  < y < H, (A 1) 

with a: = 0, J? = 0, 6 = 0, $ = 1, K = constant, qo = constant. 
The solutions for a,, X and u2 are 

a, = qo, x=- H2Au {l--xp(-6)}cos 
Z 2 K  

H"AU)~ 
g2 = ------{@-$ + 2 exp ( - 6) -$exp ( -go)} 

x3K3 

exp ( -6) ++exp ( -28) -&exp ( -46)) cos 

where 
7C2K 

H2 
6 = - t .  

The e-folding rate can be used to define a 'mixing time' corresponding to 19 = 1. At 
this mixing time the cross-sectionally averaged variance is given by 

H4(A~)2 
0.168 - - - H 4 ( A ~ ) 2  

u 2  = ~ 

x3K2 6 x 3 K 2  ' 
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